

GPS measurements on Pine Island Glacier

Martin Truffer, Robert Bindschadler, David Holland

University of Alaska Fairbanks NASA Goddard New York University

WAIS, 2009

GPS Installation

Data Processing

Results

Conclusions

Outline

Pine Island Glacier

GPS Installation

Data Processing

Results

Conclusions

▶ One of the primary drainages into the Amundson Sea Embayment

- One of the primary drainages into the Amundson Sea Embayment
- Short floating tongue

- ➤ One of the primary drainages into the Amundson Sea Embayment
- Short floating tongue
- Continued retreat of grounding line, acceleration, and thinning

- One of the primary drainages into the Amundson Sea Embayment
- Short floating tongue
- Continued retreat of grounding line, acceleration, and thinning

Drains a marine ice sheet; potential for large changes

Bottom topography

Vaughn et al., 2006, GRL

Outline

Pine Island Glacier

GPS Installation

Data Processing

Results

Conclusions

GPS Installation 6 / 23

GPS Location

GPS Installation 7 / 23

GPS Location

1996 velocity field from I. Joughin

GPS Installation 8 / 23

Local flow field

GPS Installation 9/23

GPS Location

GPS on ALOS image, courtesy: I. Joughin

GPS Installation 10 / 23

GPS station setup

GPS Installation 11 / 23

Outline

Pine Island Glacier

GPS Installation

Data Processing

Results

Conclusions

Data Processing 12 / 23

Data record

▶ PIG 1 recorded since 13 January 2008 with a few days missing

Data Processing 13 / 23

Data record

- ▶ PIG 1 recorded since 13 January 2008 with a few days missing
- ▶ PIG 2 recorded 10 January 24 March 2008

Data Processing 13 / 23

▶ Process data kinematically using the utility track

Data Processing 14 / 23

- Process data kinematically using the utility track
- Base station: Howard Nunatak

Data Processing 14/23

- Process data kinematically using the utility track
- Base station: Howard Nunatak
- 370 km base line; that's a lot

Data Processing 14/23

- Process data kinematically using the utility track
- Base station: Howard Nunatak
- 370 km base line; that's a lot
- Noise in processed data: \approx 0.05 m

Data Processing 14/23

Data Analysis

► Calculate deviation from mean motion through a strain field by fitting displacement data to $x = x_0 + \frac{v}{\dot{\varepsilon}} \left(e^{\dot{\varepsilon}(t-t_0)} - 1 \right)$

Data Processing 15/23

Data Analysis

- Calculate deviation from mean motion through a strain field by fitting displacement data to $x = x_0 + \frac{v}{\dot{\epsilon}} \left(e^{\dot{\epsilon}(t-t_0)} - 1 \right)$
- Analyze residuals for tidal and seasonal signals

15/23

Outline

Pine Island Glacier

GPS Installation

Data Processing

Results

Conclusions

Results 17/23

Results 17/23

Results 17/23

Best fit initial velocity: 421 ma⁻¹

- Best fit initial velocity: 421 ma⁻¹
- ► Best fit strain rate: 0.0659 a⁻¹

➤ 2008 velocity: 32% increase from 2006 (2.7% a⁻¹)

- ➤ 2008 velocity: 32% increase from 2006 (2.7% a⁻¹)
- ► Best fit *strain rate*: 0.0659 a⁻¹

- ➤ 2008 velocity: 32% increase from 2006 (2.7% a⁻¹)
- ► Best fit *strain rate*: 0.0659 a⁻¹
- Strain rate from velocity field: 0.02 -0.04 a⁻¹

- ➤ 2008 velocity: 32% increase from 2006 (2.7% a⁻¹)
- ► Best fit *strain rate*: 0.0659 a⁻¹
- Strain rate from velocity field: 0.02 -0.04 a⁻¹
- Acceleration: 2-4% a⁻¹

Velocity variations

Seasonal and shorter period variations

Results 19/23

Tidal signals

Tidal harmonic analysis

Results 20/23

Outline

Pine Island Glacier

GPS Installation

Data Processing

Results

Conclusions

Conclusions 21 / 23

Conclusions

▶ Pine Island Glacier continues to accelerate at a rate of > 2% per year

Conclusions 22 / 23

Conclusions

- ▶ Pine Island Glacier continues to accelerate at a rate of > 2% per year
- ▶ The seasonality in flow is small, but clearly present

Conclusions 22 / 23

Conclusions

- ▶ Pine Island Glacier continues to accelerate at a rate of > 2% per year
- ► The seasonality in flow is small, but clearly present

Shorter term variations, causes?

Conclusions 22 / 23

THANKS

Conclusions 23/23